-classroom		NAME:			
		Gr 8	Date:	Time	60 mins
CAPS Reference	1-2 Exponents (Term 1)				
Topic	1-2-1 Square numbers and their square roots				

1. Think First! [5 mins]

1.1 On squared paper draw the following diagrams (or use bottle tops to make an array).

1.2 Complete the following table with information from your diagrams or arrays.

	Kind of shape	Number of squares (objects)	Factors of this number
A			
B			
C			
D			

2. Got it? [5 mins]

3. Learn and remember! [own time]

3. Go ahead! [15 mins]

3.1 Draw a square diagram to represent the following numbers.

Underneath the diagram write each of the numbers as a product of two factors.
3.1.1 16
3.1.2 36
3.1.3 81
3.2 Write these powers without exponents and then calculate the value.
3.2.1 $\quad 9^{2}$
3.2.2 50^{2}
3.2.3 $\quad 7^{2}$
3.2.4 12^{2}
3.3 Write these numbers using a power. (Use a base and an exponent.)
3.3.1 64
3.3.2 100
3.3.3 144
3.3.4 900
3.4 Make a multiplication tables grid like the one below. Fill in the missing numbers.
3.4.1 Colour in the answers given by 2 of the same factors, e.g. shade 9 as $3 \times 3=9$.
3.4.2 Where are the shaded numbers on the table?

\times	1	2	3	4	5	6	7	8	9	10	11	12
1	1	2							9			12
2	2		6	8	10	12	14	16			22	
3	3							24	27	30	33	
4	4										44	
5	5										55	
6	6	12			30	36	42			60	66	
7	7	14			35							
8	8	16	24	32	40	48	56	64	72	80	88	
9	9	18			45	54	63	72	81	90	99	
10	10										110	120
11	11											132
12	12	24										

4. Check your work! [10 mins]

5. Learn and remember! [own time]

Learn all the square numbers.

6. Got it? [10 mins]

7. Go ahead! [10 mins]

7.1 Copy this table and fill in the missing values. If necessary, use your calculator to help you with numbers 7.9 and 7.10.

	Number	Factors	Written with exponent	$\sqrt{-}=$
7.1	9	3×3	3^{2}	3
7.2	25	5×5		
7.3				8
7.4			9^{2}	
7.5	1			
7.6		12×12		11
7.7				
7.8	100		25^{2}	
7.9		100×100		
7.10				

8. Check your work! [5 mins]

-classroom		NAME:			
		Gr 8	Date:	Time	60 mins
CAPS Reference	1-2 Exponents (Term 1)				
Topic	1-2-2 Cubic numbers and their cube roots				

1. Think First! [10 mins]

1.1 On isometric dotty paper (page 4) draw a 3D array OR use little cubic blocks to make a model to represent the following numbers.

1.18

$1.2 \quad 27$
1.3125

1.2 Complete the following table with information from your diagrams or arrays.

	Kind of shape	Number of cubes (objects)	Factors of this number
E			
F			
G			

2. Got it? [5 mins]

I Each of the above models is a cube. 8,27 and 125 are cubic numbers because they " each have three factors that are the same.

In the same way as we did with square numbers, we write this in a shorter way using an exponent.

$$
\begin{array}{lll}
\text { Example: } & 8=2 \times 2 \times 2=2^{3} & \text { We say " } 2 \text { to the power of } 3 \text { " } \\
& 27=3 \times 3 \times 3=3^{3} & \text { We say " } 3 \text { to the power of } 3 " \\
& 125=5 \times 5 \times 5=5^{3} & \text { We say " } 5 \text { to the power of } 3 "
\end{array}
$$

When the exponent is a 3 we usually say a number is "cubed" e.g. " 2 cubed" or " 8 cubed".

3. Go ahead! [$\mathbf{1 0} \mathbf{~ m i n s}$]

3.1 Write these powers without exponents and then calculate the value.
(If necessary, use a calculator to help you.)
3.1.1 $\quad 73$
3.1.2 6^{3}
3.1.3 4^{3}
3.1.4 10^{3}
3.1.5 1^{3}
3.2 Write these numbers using a power (use a base and an exponent).
3.2.1
27
3.2.2 512
3.2.3 729
3.2.4 8000
3.2.5 1331
3.3 Write 64 in as many different ways as you can using powers.

4. Check your work! [5 ming]

5. Got it? [10 wins]

l
In

6. Go ahead! [15 wins]

6.1 Calculate the following:
6.1.1 4^{3}
6.1.2 $\sqrt[3]{64}$
6.1.3 $6 \times 6 \times 6$
6.1.4 $\sqrt[3]{216}$
6.1.5 $\sqrt[3]{1}$
6.2 Calculate these answers in your head. Write the answers in your exercise book.

6.2 .1	7^{2}	6.2 .2	$\sqrt[2]{49}$	$6.2 .33^{3}$	$6.2 .4 \quad 5^{2}$
6.2 .5	$\sqrt[2]{100}$	$6.2 .6 \quad 6^{2}$	$6.2 .7 \quad \sqrt[2]{36}$	$6.2 .8 \quad \sqrt[2]{4}$	
$6.2 .91^{2}$	$6.2 .10 \sqrt[2]{144}$	$6.2 .111^{3}$	$6.2 .12 \sqrt[2]{1}$		
$6.2 .133^{2}$	$6.2 .14 \sqrt[3]{64}$	$6.2 .154^{2}$	$6.2 .16 \sqrt[2]{81}$		
$6.2 .17 \sqrt[2]{900}$	$6.2 .1812^{2}$	$6.2 .19 \sqrt[2]{16}$	$6.2 .204^{3}$		
$6.2 .211^{2}$	$6.2 .22 \sqrt[3]{8}$	$6.2 .23 \sqrt[2]{64}$	$6.2 .242^{2}$		
$6.2 .25 \sqrt[3]{27}$	$6.2 .26 \sqrt[2]{400}$	$6.2 .2711^{2}$	$6.2 .28 \sqrt[2]{9}$		
$6.2 .292^{3}$	$6.2 .308^{2}$	$6.2 .31 \sqrt[3]{1}$	$6.2 .32 \sqrt[2]{144}$		
$6.2 .335^{3}$	$6.2 .349^{2}$	$6.2 .35 \sqrt[3]{125}$	$6.2 .36 \sqrt[2]{121}$		
$6.2 .376^{3}$	$6.2 .3811^{2}$	$6.2 .39 \sqrt[3]{216}$	$6.2 .40 \sqrt[2]{25}$		

6.3 Copy this table and fill in the missing values. Use your calculator to help you with the bigger numbers

	Number	Factors	Written with exponent	$\sqrt[3]{ }=$
6.3 .1	216	$6 \times 6 \times 6$	6^{3}	$\sqrt[3]{216}=63$
6.3 .2	125	$5 \times 5 \times 5$		
6.3 .3			9^{3}	
6.3 .4	1000			
6.3 .5		$4 \times 4 \times 4$		
6.3 .6	1			3
6.3 .7				30
6.3 .8				
6.3 .9				
6.3 .10	1000000			

7. Check your work! [5 ming]

-classroom		NAME:			
		Gr 8	Date:	Time	$1 \frac{3}{4} \mathrm{hrs}$
CAPS Reference	1-2 Exponents (Term 1)				
Topic	1-2-3 Representing and comparing numbers in exponential form				

1. Got it? [5 mins]

```
"I Reminder:
An exponent represents the number of factors we have of a certain number or symbol.
Example 1: }\mp@subsup{3}{}{5}=3\times3\times3\times3\times3\mathrm{ (5 factors)
Example 2: }\quad\mp@subsup{5}{}{6}=5\times5\times5\times5\times5\times
Important Note:
35}\not=3\times5\quad3\times5=5+5+5+5+5 56 # 6 < 5 6 < 5 = 5 + 5+5+5+5+5
```


2. Go ahead! [20 mins]

2.1 Write each of the following without using exponents. Do not calculate the answer.
2.1.1 7^{5}
2.1.2 10^{3}
2.1.3 5^{10}
2.1.4 8^{2}
2.1.5 21^{5}
2.1.6 9^{7}
2.1.7 2^{4}
2.1.8 10^{6}
2.2 Write each of the following using exponents:
2.2.1 $6 \times 6 \times 6$
2.2.2 $20 \times 20 \times 20 \times 20 \times 20$
2.2.3 $1 \times 1 \times 1 \times 1 \times 1 \times 1$
2.2.4 $3 \times 3 \times 3 \times 3 \times 3$
2.2.5 $100 \times 100 \times 100 \times 100$
2.2.6 $4 \times 4 \times 4$
2.2.7 $2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2$
2.2.8 $8 \times 8 \times 8 \times 8 \times 8$
2.3 Say whether the following statements are True or False. If False, write a true statement starting with the left side of the $=$ sign.
2.3.1 $4^{3}=12$
2.3.2 $5 \times 5 \times 5 \times 5=5^{4}$
2.3.3 $\quad 7^{4}=7 \times 4$
2.3.4 $3 \times 3=3^{3}$
2.3.5 $6 \times 6 \times 6 \times 6 \times 6 \times 6=6^{6}$
2.3.6 $5 \times 4=4+4+4+4+4$

3. Check your work! [10 mins]

4. Got it? [5 mins]

5. Go ahead! [15 mins]

5.1 Write these powers out in full without using exponents, and then give the value.
5.1.1 1^{4}
5.1.2 8^{1}
5.1.3 $\quad 27^{1}$
5.1.4 $\quad 1^{9}$
5.1.5 4^{1}
5.1.6 $\sqrt{1}$
5.1.7 557^{1}
5.1.8 90^{1}
5.2 Write the following products using exponents, and then give the value.
5.2.1 $1 \times 1 \times 1 \times 1 \times 1$
5.2.2 $\quad 5$
5.2.3 $1 \times 1 \times 1 \times 1$
5.2.4 90
5.3 Write the value of each of the following
5.3.1 1^{9}
5.3.2 9×1
5.3.3 $\quad 9^{1}$
5.3.4 1×9

6. Check your work! [5 mins]

7. Think Again! [10 mins]

7.1 Write down whether the following number statements are true or False.

7.1	$2^{4}=8$	7.2	$3^{2}=9$	7.3	$2^{6}=6^{2}$	7.4	$1^{7}=1^{11}$
7.5	$8^{3}=8 \times 8 \times 8$	7.6	$8^{8}=64$	7.7	$11 \times 2=11^{2}$	7.8	$8 \times 8=4^{3}$
7.1	F	7.2	T	7.3	F	7.4	T
7.5	T	7.6	F	7.7	F	7.8	T

8. Got it? [10 mins]

7.1	$2^{4}=2 \times 2 \times 2 \times 2=16$	$2 \times 4=8$
7.3	$2^{6}=2 \times 2 \times 2 \times 2 \times 2 \times 2=64$	$6^{2}=6 \times 6=36$
7.6	$\begin{aligned} & 8^{8}=8 \times 8 \\ & =16777216 \end{aligned}$	8×8 or $8^{2}=64$
7.7	$11 \times 2=22$	$11^{2}=11 \times 11=121$

9. Go ahead! [15mins]
9.1 Say whether the following statements are True or False. If False, write two correct statements showing why the statement is False.
9.1.1 $\quad 3^{4}=12$
9.1.2 $\quad 4^{2}=16$
9.1.3 $\quad 2^{4}=4^{2}$
9.1.4 $\quad 1^{15}=1^{23}$
9.1.5 $6^{3}=6 \times 6 \times 6$
9.1.6 $9^{2}=81$
9.1.7 $\quad 4^{4}=16$
9.1.8 $\quad 3^{2}=9$
9.1.9 $6 \times 3=6^{3}$
9.1.10 $6^{3}=(2 \times 3)^{3}$
9.2 Fill in the correct sign from $>,<$ or $=$ to make each number sentence True.
9.2.1 $4^{3} _4 \times 3$
9.2.2 $\sqrt{99^{2}} \quad$ _ $10^{2}-1$
9.2.3 $\quad 2^{6}$ \qquad 6^{2}
9.2.4 $\sqrt{64} \ldots 2^{3}$
9.2.5 $5^{2} \ldots 2^{5}$
9.2.6 7×2 \qquad 7^{2}
9.2.7 4×9 _ 9×4
9.2.8 $(5+6)^{2}-(5 \times 6)^{2}$
10. Check your work! [10 mins]

1. Think First! [5 mine]

Write each of the following out in full. Re-write without using brackets,
$1.1 \quad\left(4^{3}\right)^{2}$
$1.2 \quad\left(6^{2}\right)^{4}$
$1.3 \quad\left(10^{5}\right)^{2}$

2. Got it? [5 miss]

3. Go ahead! [5 mind]

Write each of the following using one exponent only:
$3.1 \quad\left(7^{2}\right)^{4}$
$3.2 \quad\left(5^{3}\right)^{5}$
3.3
$\left(2^{6}\right)^{3}$
$3.4 \quad\left(10^{3}\right)^{3}$

4. Check your work! [5 wins]

5. Think Again! [5 mine]

Write each of the following out in full:
$5.1 \quad(4 \times 5)^{2}$
$5.2 \quad(3 \times 6)^{4}$
$5.3(10 \times 2)^{3}$

6. Got it? [5 wins]

6. Go ahead! [5 wins]

Write each of the following without brackets
6.1
$(3 \times 5)^{4}$
6.2
$(2 \times 8)^{5}$
6.3
$(7 \times 3 \times 2)^{3}$
$6.4(10 \times 3)^{3}$

7. Check your work! [5 ming]

-classroom		NAME:			
		Gr 8	Date:	Time	30 mins
CAPS Reference	1-2 Exponents (Term 1)				
Topic	1-2-7 Solving problems using exponents				

Go ahead! [25 mins]

1.1 Calculate each of the following. Use your calculator if necessary.
1.1.1 $\quad 5^{2}$
1.1.4 $(0,25)^{3}$
1.1.2 8^{3}
1.1.3 $(0,6)^{2}$
1.1.5 $\sqrt{0,04}$
1.1.6 $\quad 6^{3} \times 5^{2} \times 16^{0}$
1.1.7 $(16-6)^{4}$
1.1.8 $\sqrt{27+22}$
1.1.9 $\frac{3^{8}}{3^{2}}$
1.1.10 $\quad\left(\frac{5}{6}\right)^{2}$
1.1.11 $\sqrt{\frac{36}{25}}$
1.1.2 $\sqrt{99-18}$
1.2 Say whether the following are True or False. If false, write a correct statement.
1.2.1 $(-2)^{2}+4^{2}+8^{1}=28$
1.2.2 $-4^{3}-3^{2}+12=-61$
1.2.3 $[(-2)(-3)]^{2}+\sqrt{49}=43$
1.2.4 $\left(9^{2}+10^{2}\right)^{0}=181$
1.3 Give the value of each of the following if $\mathrm{k}=2$
1.3.1 $\left(\frac{\mathrm{k}^{3}}{\mathrm{k}^{2}}\right)^{2}$
1.3.2 $\sqrt{\left(\frac{\mathrm{k}^{5}}{\mathrm{k}^{3}}\right)^{2}}$
1.3.3 $\quad \mathrm{k}^{6}-\mathrm{k}^{5}+\mathrm{k}^{4}-\mathrm{k}^{3}+\mathrm{k}^{2}-\mathrm{k}+\mathrm{k}^{0}$
2. Write these numbers in standard form:
$2.19,842 \times 10^{4}$
$2.2 \quad 8,3582 \times 10^{10}$
$2.30,004912 \times 10^{8}$

3 Write the large numbers in each of the following using Scientific notation:
3.1 Light travels 1800 000km in six seconds.
3.2 A spacecraft weighed about 700000000 kg at take-off.
3.3 The sun is 1000000 bigger than the earth.
3.4 The temperature of the sun is 5727 degrees Celsius.

4 A man released 10 rabbits into a nature reserve in the Karoo. The number of rabbits trebled every month. Use exponents to answer the following:
4.1 How many rabbits are there after one month, two months and three months respectively?
4.2 How long will it take before there are more than 2400 rabbits?

5 A builder paves square patios using square tiles. Here is what the patios look like, and the number of tiles used.

\longleftarrow Small $5 \rightarrow$ tiles across

Medium 64 tiles

Large 144 tiles
5.1 The small patio measures 5 tiles across. How many tiles are used for this patio?
5.2 If 64 tiles are used for a medium patio, how many tiles are used down one side? Write your answer using a $\sqrt{ }$ sign.
5.3 Use the same method to calculate how many tiles are down one side of the large patio.
5.4 Each tile costs the builder R45,00 and he allows for a 20% mark-up per tile. He charges R25,00 per tile to lay them.
5.4.1 How much do the tiles cost the builder for each sized patio?
5.4.2 How much profit does he make on the tiles for each of the three patios?
5.4.3 How much do home owners pay to have each patio built?
5.5 Some people want patios of other sizes.

How many tiles are needed for a square with a side measure of:
5.5.1 10 tiles?
5.5.2 15 tiles?
5.6 How many tiles are there down the side of a patio using:
5.6.1 121 tiles?
5.6.2 400 tiles?
5.7 The builder has an odd lot of 72 tiles. Can he use all the tiles to make a square patio? What could he do?

6. A challenge

The story of the two neighbours.
A multi billionaire offered to give his neighbor R1 000 000,00 for a Christmas present. The clever neighbor said that he would prefer to be given the money over December as follows: R1,00 on Dec 1, R2,00 on Dec 2, R4,00 on Dec 3 and so on, doubling the amount he gave each day in December until Christmas Day, 25 December. The multi billionaire agreed immediately thinking the neighbor was crazy to ask for so little.
Who "laughed all the way to the bank"?
Give a reason for your answer, showing all necessary working.

7. Check your work! [5 mins]

